
By Sanjay and Arvind Seshan

Branching Error 
(a.k.a. the VM Program Instruction Break Error)

DEBUGGING LESSON



HISTORY

• We first encountered the “VM Program Instruction Break” error 
on our brick during the fall of 2013 during the Nature’s Fury FLL 
season. We searched online for any documentation about this 
error, but could not find any. We were the first to report this 
problem on the FLL Forum.

• Many FLL and WRO teams have encountered this error since 
then.  While they persisted and tried to come up with a work-
around, the solution was never enough. 

• Without knowing what was causing the error, it was difficult to 
come up with a permanent solution. The only solution available 
at the time was trial and error. 

• This presentation documents what the underlying causes were 
and the solution.

© 2016 EV3Lessons.com, Last Edit 10/25/2016



COMMON SYMPTOMS
• The robot stops in the middle of 

a program and displays “VM 
Program Instruction Break” on 
the screen

• Adding debugging code may 
make the error appear in a 
different location of the code.

• The error would appear even 
with minimal changes to the 
code such as the movement of 
the relative position of two My 
Blocks

• Often occurs in more complex 
programs (e.g. it often happened 
to us each season as we added 
more code to our main 
sequencer)

© 2016 EV3Lessons.com, Last Edit 10/25/2016

Image provided by David Gilday



WHAT IS A VM?

A virtual machine (VM) is an emulation of a computer system. This 
“emulated” system maybe totally different than the computer you 
run the VM on. For example, you may run a VM emulating an 
iPhone on your laptop to run or test phone software.
The EV3 uses a TI's Sitara AM1808 ARM9™ processor running the 
Linux OS. However, the code you download to the EV3 is not a 
ARM9 binary. It contains EV3 “bytecode” that is interpreted by a 
VM running on the EV3. 
The bytecode for the EV3 defines a simple set of instructions to 
perform computations and access the hardware connected to the 
EV3 (screen, bluetooth, motors, etc.)

© 2016 EV3Lessons.com, Last Edit 10/25/2016



WHAT IS BYTECODE?

The bytecodes are closely related to the blocks you see in EV3-G. 
For example:

BYTECODE: OUTPUT_POWER(0,1,50). This particular command 
sets the power of the motor on port 1. Other bytecodes actually 
start and stop the motor

© 2016 EV3Lessons.com, Last Edit 10/25/2016

Command Brick #

Port # Bitfield

Power

OUTPUT_POWER(0,1,50)

To learn more, visit: 
http://analyticphysics.com/Diversions/Assembly%20Language%20Programming%20for%20LEGO%20Mindstorms%20EV3.htm



WHAT ROLE DOES THE VM PLAY

The VM sits between your programs and the operating system 
running on the EV3
Note that systems such ev3dev run their own updated Linux 
installation with their own drivers for the EV3 hardware (i.e. they 
don’t use a VM bytecode interpreter)

© 2016 EV3Lessons.com, Last Edit 10/25/2016

ARM9 CPU EV3 Hardware (screen, 
sensors, etc.)

Linux

Virtual Machine

EV3-G Programs Robot C Other 
Languages



SOURCE OF THE PROBLEM
• Was it really a bug in the VM?

• No. Turns out it an issue with the compiler on your PC generating 
incorrect bytecode. Specifically, it was a problem with the branches in 
the code generated.

• What is branch code?
• Normally, your EV3 executes instructions in sequential order
• A branch (or jump) instruction is one that tests a condition (e.g. is the 

button pressed) and causes the EV3 to jump to a different set of 
instructions if the condition is met

• Branches are used to implement Switches, Loops and almost any 
command that results in different possible results.

• EV3 bytecode has unconditional branches that always jump to another 
piece of code, and conditional branches that test one or two pieces of 
data

© 2016 EV3Lessons.com, Last Edit 10/25/2016



A SIMPLE VIEW

What happens in a VM Program Instruction Break: In the bottom case, the 
branch jumps too far. The EV3 tries to interpret what the command “the 
motors” means and fails.

© 2016 EV3Lessons.com, Last Edit 10/25/2016

Read the touch sensor. Was it pressed? Try again. Stop all the motors.

No

Read the touch sensor. Was it pressed? Try again. Stop all the motors.

No

What you want your code to do: In the top case, the branches jump to 
the beginning of each sentence

Each box is one 
bytecode 
instruction.



A BYTECODE VIEW

© 2016 EV3Lessons.com, Last Edit 10/25/2016

INPUT_READ (0,0,16,0,pushed)

JR_FALSE(pushed,buttonNotPushed)

JR(buttonPushed)

buttonNotPushed:

buttonPushed:

OUTPUT_STOP(0,1,0)

Read touch on port 1 in touch mode 
and store in variable “pushed”

If “pushed” is FALSE exit the loop by 
jumping to the buttonNotPushed code. 

If it is not pushed, it just goes to the 
next instruction

Go back to the beginning of the 
“button pushed” loop label

buttonNotPushed: label

This is the “button pushed” loop label

Stop motor B



EXAMPLE BYTECODE

© 2016 EV3Lessons.com, Last Edit 10/25/2016

INPUT_READ (0,0,16,0,pushed)

JR_FALSE(pushed,32)

JR(-32)

OUTPUT_STOP(0,1,0)

Actual executed code does not 
include the labels, but does include 
the offsets.

Length (or offset) of the jump is in 
red. 

Arrows point to the destination of the 
jump.

Note, the jump is to the start of each 
command.



THE PROBLEM

The offset of the branch was 
sometimes calculated incorrectly. 
In this case, it says “33” instead of 
32 (in red). 

As a result, the branch would 
jump to the middle of 
OUTPUT_STOP instruction. This 
is like jumping to the middle of a 
sentence. Most often the partial 
instruction made no sense and 
the VM would respond with a “VM 
Instruction Break” 

Sometimes the partial command 
was a valid instruction – just not 
the one you wanted. Therefore, 
your robot would act incorrectly.

© 2016 EV3Lessons.com, Last Edit 10/25/2016

INPUT_READ (0,0,16,0,pushed)

JR_FALSE(pushed,33)

JR(-32)

OUTPUT_STOP(0,1,0)



WHY? AND WHAT HAPPENS 
NOW?

• The source of the problem is that the code compiler on your PC 
calculated an incorrect branch length (offset).

• LEGO has released an update to the EV3 programming 
software with a bug fix 
• As of of 10/25/2016, both Retail and Education editions of V. 

1.2.2 are available for download
• Download and install the update on your PC

• After that, you can load any program you had symptoms such as 
“VM Instruction Break” that were caused by the bad branches 
and just download again to your EV3. The newly downloaded 
code should not have any bad branching code!

© 2016 EV3Lessons.com, Last Edit 10/25/2016



SOME LESSONS

• Reporting errors can be useful
• A big part of finding the solution to the “VM Program Instruction 

Break” error was FLL, WRO teams and other robot builders 
reporting and discussing errors

• Similar to when you see a Google or Microsoft “report this 
error” message on your screen.

• Learning debugging skills
• FIRST LEGO League teams, in particular, faced this error as 

their code became come complex
• They persisted and worked around the problem as well as they 

could.

© 2016 EV3Lessons.com, Last Edit 10/25/2016



A COMMUNITY EFFORT

Thank you to MINDSTORMS Community 
Partners, FLL Teams, WRO Teams, other 

builders in the community, National 
Instruments, and LEGO who worked 

together to identify this error and create a 
solution.

© 2016 EV3Lessons.com, Last Edit 10/25/2016



CREDITS

• This tutorial was created by Sanjay Seshan and Arvind Seshan
• More lessons at www.ev3lessons.com

© 2016 EV3Lessons.com, Last Edit 10/25/2016

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.


